

Utility Assessments in Synthetic Data

Lucy Mosquera & Xi Fang April 27th, 2022

Agenda

Introduction to Synthetic Data

 $\mathbf{1}$

General description of what synthetic data is

Introduction to Utility Assessments

An overview of state-of-the-art ways to measure utility in synthetic data

Publication Results

3

Simulation results to assess the relationship between generic and workload aware utility assessments

Synthetic Data

COU1A United State United State

COU1A United State United State

Real Data

						A
	AGECAT	AGELE70	WHITE	MALE	BMI	٨
es	3	1	0	1	25.44585	
es	3	1	1	0	24.09375	
es	3	1	1	1	33.07829	
es	2	1	1	0	33.64845	
es	3	1	1	0	25.66958	
es	3	1	1	0	25.85938	
es	2	1	1	0	24.7357	
es	5	0	0	0	27.75276	
es	5	0	1	1	28.07632	

	AGECAT	AGELE70	WHITE	MALE	BMI	
es	2	1	1	1	33.75155	
es	2	1	1	0	39.24707	
es	1	1	1	0	26.5625	
es	4	1	1	1	40.58273	
es	5	0	0	1	24.42046	
es	5	0	1	0	19.07124	
es	3	1	1	1	26.04938	
es	4	1	1	1	25.46939	

Synthetic Data

The Synthesis Process

4

Synthetic Data

Utility Assessment

Aim to convey how similar synthetic data is to the real data is has been generated from

Utility assessments can be performed in different ways that convey different information to data users; there currently is not a consistent industry-wide standard

Workload Aware vs Generic

- Workload aware utility assessment illustrate how well synthetic data can be used as a drop-in replacement or proxy for real data for a specific analysis
- Generic or broad utility assessments show how similar synthetic data is to the real data it was generated from without referencing a specific analysis

Dataset vs Generative Model

Specific to a given dataset

Representative of a generative model

Continuum of Utility Assessments Specific to a

Generic Utility Assessments

Specific to a Given Generative Model

Given Synthetic

Dataset

Specific to an Analysis

Continuum of Utility Assessments Specific to a

Generic Utility Assessments

Specific to a Given Generative Model

Given Syntheti

Dataset

9

Can utility assessments in this region

Be predictive of utility assessments in this region?

Specif c to an Ana ysis

Other Utility Assessment Strategies

 Focus on marginal distributions of specific variables or joint distributions of sets of variables (e.g., Hellinger distance or bivariate correlation) Use subject area experts to attempt to select the synthetic records from a mixed dataset

Our Work

JMIR Medical Informatics

JMIRPublications

JMIR MEDICAL INFORMATICS

Original Paper

Utility Metrics for Evaluating Synthetic Health Data Generation Methods: Validation Study

Khaled El Emam^{1,2,3}, BEng, PhD; Lucy Mosquera^{2,3}, BA, MSc; Xi Fang³, BA, MSc; Alaa El-Hussuna⁴, MSc, MD

¹School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada ²Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada ³Replica Analytics Ltd, Ottawa, ON, Canada

⁴Open Source Research Collaboration, Aarlberg, Denmark

Goal: evaluate how well common utility metrics can rank SDG methods according to performance on a logistic regression prediction models

El Emam et al

Assessment Strategy

• Using 30 different health datasets, which utility assessment can be used to reliably rank 3 different synthetic data generation (SDG) methods in terms of their performance on a specific logistic regression analysis For each dataset, each SDG method generated 20 copies and the generic utility performance was averaged across all copies

Synthetic Data Generating Methods

Three SDG methods that have very different approaches:

- Bayesian network
- Generative adversarial network
- Sequential tree synthesis

Sequential Tree Synthesis

Flexible synthesis model where variables are synthesized in a sequence.

Replica Analytics software

Synthetic Data

Bayesian Network

- Build Bayesian Network (directed acyclic graphs)
- Input: a set of values from the node's parent variables
- Output: the probability of the variable represented by the node

Synthetic Data

Generative Adversarial Network

Synthesis model that iteratively trains two neural networks in an arms race to:

- Generate more representative synthetic data
- 2. Discriminate real records from synthetic more accurately

Propensity Score

Discriminator

Synthetic Data

Generator

Random Data

Workload Aware Utility Assessment

 Logistic regression where model performance is assessed using AUROC and AUPRC Consider AUROC & AUPRC differences as the workload aware utility metrics Designed to represent a typical analysis for health

data

Generic Utility Assessments

Focused on assessments that look at the synthetic dataset as whole:

- Maximum Mean Discrepancy
- Multivariate Hellinger Distance
- Wasserstein Distance
- Cluster Analysis Measure
- Distinguishability Metrics (pMSE)

Maximum Mean Discrepancy

The maximum mean discrepancy(MMD) is proposed by Gretton et al. [1] to test whether the samples are from different distributions.

Empirical Estimate, let **K** be a class of smooth function:

[Cortes & Vapnik, 1995; Schölkopf & Smola, 2001]

$$MMD[k, X, Y] = sup_{k \in K} \left(\frac{1}{m} \sum_{i=1}^{m} k(x_i)\right)$$

$$-\frac{1}{n}\sum_{i=1}^n k(y_i)$$

Multivariate Hellinger Distance

The Hellinger distance is used to quantify the similarity between two probability distributions. It can be derived from the multivariate normal Bhattacharyya distance

Bhattacharyya distance: the degree of dissimilarity between two probability distributions

$$D_B(p,q) = -\ln(BC(p,q)) \qquad BC(p,q) = \int \sqrt{p(x)}$$

Hellinger distance: the degree of similarity between two probability distributions

$$H^{2}(p,q) = \frac{1}{2} \int (\sqrt{p(x)} - \sqrt{q(x)})^{2} dx = 1 - \int \sqrt{q(x)} dx$$

bound between 0 and 1, more interpretable

)q(x)dx

- p(x)q(x)dx

Wasserstein Distance

For a distribution of mass p(x) on a space X, we wish to transport the mass in such a way that it is transformed into the distribution q(x) on the same space.

Given a cost function, the optimal transport plan is the plan with the minimal cost out of all possible transport plans. If the cost of a move is simply the distance between the two points, then the optimal cost is identical to the definition of the W1 distance.

$C = inf_{\gamma \in \Gamma(p,q)} \int c(x,y) d\gamma(x,y)$

$$U_{c} = \frac{1}{G} \sum_{j=1}^{G} w_{j} \left[\frac{n_{jo}}{n_{j}} - c \right]^{2} \qquad c = \frac{N_{o}}{N_{o} + 1}$$

Where nj denotes number of observations in the jth cluster

N_M

Distinguishability Metric

$$propensityMSE = \frac{1}{N} \sum_{i} (p_i - 0.5)$$

 p_i

N observations

2

Page Test

Adult Data	Multivariate Hellinger Distance	Group	AUROC DIFF	AUPRC Diff
RA	0.2	L	0.1	0.2
CTGAN	0.5	Μ	0.3	0.3
BN	0.7	Η	0.5	0.4

H0_{AUROC}: median(AUROC_Diff_L) = median(AUROC_Diff_M) = median(AUROC_Diff_H)

H1_{AUROC}: median(AUROC_Diff_L) > median(AUROC_Diff_M) > median(AUROC_Diff_H)

Results

Utility metric	AUROC ^a diffe	AUROC ^a difference		AUPRC ^b difference	
	L value	P value	L value	P value	
Maximum mean discrepancy	384	.00104 ^c	392	<.001 ^c	
Hellinger distance ^d	398	<.001 ^c	409	<.001 ^c	
Wasserstein distance	392	<.001 ^c	403	<.001 ^c	
Cluster analysis	396,	<.001 ^c	405	<.001 ^c	
Propensity mean squared error	390	<.001 ^c	394	<.001 ^c	

Table 1. Page test results for each of the utility metrics and prediction accuracy

The test statistic (L) indicates the strength of the ordering of data. The Hellinger distance had the highest L value, suggesting that it has an advantage in ordering the SDG methods

Results: Multivariate Hellinger Distance

Hellinger

Results

Comparing SDG methods, the RA sequential tree method produced data with the smallest differences in regression model performance

Conclusions

- Many generic utility metrics can be predictive of analysis specific utility
- Multivariate Hellinger distance was the most predictive generic utility assessment considered by a small margin
- Sequential tree synthesis led to synthetic data with the smallest differences in predictive ability on average

Shows that generic utility metrics can be used to select the best generative model for a given analysis

Limitations

- Use case was ranking SDG methods
- Workload aware assessment was logistic regression
- Did not assess privacy implications

Future Work

 Extend these results from selecting a SDG method to hyperparameter tuning within a method (e.g., tree depth in sequential trees) Assess combined metric that includes utility and privacy

 How much better is hellinger distance compared to the other generic assessments?

 What happens if you try to combine these metrics and create an aggregate?

• What if you vary the number of copies of synthetic datasets generated for each SDG?

 What if the synthesized datasets were a different size than the original datasets?

