

AN AETION COMPANY

Generating & Evaluating Synthetic Clinical Trial Data in a Pharmaceutical Company

Mark Baillie & Lucy Mosquera

Agenda

- Overview of the requirements and use cases for synthetic clinical trial data
- Clinical trial datasets used in this case study
- Synthesis process for clinical trial data, utility, and privacy results
- Impact of the synthetic clinical trial datasets

 $\uparrow \uparrow \uparrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$

イイイイイ人イイイ

AMDS, Analytics Global Drug Development

Synthetic data and clinical drug development

Mark Baillie Director, Data Science January 18th, 2023

UNOVARTIS | Reimagining Medicine

Why synthetic data?

Synthetic data may enable learning from existing and future data using advances in statistics, machine learning, data science and AI:

- increase understanding of drug, disease and patients,
- accelerate and improve development projects, and
- inform decision making.

We want to leverage advances in data science and AI

Google AI tool can help patients identify skin conditions

By Zoe Kleinman Technology reporter

() 20 hours ago

Google has unveiled a tool that uses artificial intelligence to help spot skin, hair and nail conditions, based on images uploaded by patients.

Source: https://www.bbc.com/news/technology-57157566

UNOVARTIS | Reimagining Medicine

We view synthetic data as an enabler

Source: Multi-Modal Conditional GAN: Data Synthesis in the Medical Domain. Jonathan Ziegler et al. https://openreview.net/pdf?id=8PI7W3bCTI

- Synthetic data is an important and visible research topic with growing interest from multiple industry, academic and regulation stakeholders
- Data sharing is a driver:
 - An alternative to anonymization for data sharing (i.e., improved privacy and data utility)
 - Generate privacy preserving datasets with robust utility that can be used for collaborations and knowledge generation (tools and publications)
- Synthetic data solutions may also have intrinsic value beyond data sharing
 - Use conditional generation to augment sparse datasets (e.g., 2D/3D images)

What are the potential use cases?

Source: James, S., Harbron, C., Branson, J. et al. Synthetic data use: exploring use cases to optimise data utility. Discov Artif Intell 1, 15 (2021). https://doi.org/10.1007/s44163-021-00016-y

- Statistical/machine learning methodology development and benchmarking
- Internal (external) software development
- Education, training, data challenges, and hackathons
- Internal secondary use
- Data retention
- Vendor assessments and engagements
- External sharing

Requirements for the synthetic clinical trial data case study

- The value for Novartis is to facilitate timely access to realistic data to drive both internal and external projects and programs and avoid downtime as we wait for anonymization or approval to share data.
- Case study purpose to support the internal focused use cases of tool development (for trial reporting), and methodology development.
- Task definition synthesis of six complete Phase 3/4 clinical trials (CDISC ADaM)
- Success criteria:
 - Privacy Utility

Six clinical trials covering various therapeutic areas and study designs

	Indication	Design/phase	#patients
Immunology	Plaque Psoriasis	52-week, Randomized, Double-blind Phase III Study	1,114
Cardiovascular	Recurrent Major CV Disease	Randomized, Double-blind, Placebo- controlled, Event-driven Phase III Trial	10,066
	Acute heart failure	Phase IIIb outcome study in AHF patients was designed as a multicenter, randomized, double-blind, placebo-controlled, event- driven study	6,600
Renal	Renal Transplantation	2-year, randomized, multicenter, open-label, 2-arm Phase IV study	2,037
Respiratory	Asthma	Multicenter, Randomized, 52-week, Double- blind, Parallel group, Active Controlled Phase III Study	3,092
Oncology	Breast Cancer	Multi-center, randomized, double-blind, placebo controlled Phase III study	1,147

Overview of the clinical trial data

- All available study data, stored in CDISC ADaM format focus on the analysis and reporting
- Synthesis of all measurement domains including:
 - demographics and baseline characteristics, (ADSL),
 - adverse events (ADAE),
 - laboratory measurements (ADLB),
 - time to event (ADTTE) and,
 - efficacy (ADEFF).
- Many linked, curated domains with varying data structures
 - Business logic added to support trial reporting i.e., imputations, aggregations, derivations, etc.
 - The goal is to ensure measurements are be linked together to retain coherent, consistent and logical patients

Source: Barros, J.M., Widmer, L.A., Baillie, M. *et al.* Rethinking clinical study data: why we should respect analysis results as data. *Sci Data* **9**, 686 (2022). https://doi.org/10.1038/s41597-022-01789-2

Source: http://pharma-sas.com/introduction-on-how-to-create-adam/

Requirements for the synthetic clinical trial data case study

- The value for Novartis is to facilitate timely access to realistic data to drive both internal and external projects and programs and avoid downtime as we wait for anonymization or approval to share data.
- Case study purpose to support the internal focused use cases of tool development (for trial reporting), and methodology development.
- Task definition synthesis of six complete Phase 3/4 clinical trials (CDISC ADaM)

Success criteria:

• Privacy:

- o facilitate internal data sharing clinical study data has restricted access
- Utility:
 - The synthetic data is a 1:1 replication of the original data provided in terms of structure
 - Variables that are numerical, binary, or categorical (ordinal or non-ordinal) remain the same with similar distributions and min/max characteristics
 - The synthetic data should have similar characteristics to the original data but not be identical i.e., primary and secondary research follow similar trends

Introduction to synthetic clinical trial data

AETION COMPANY

Synthetic data

		COU1A	AGECAT	AGELE70	WHITE	MALE	BN	VII IIV	
		United States	3	1		0	1 2	5.44585	Rea
A/11AT 1	TIC	United States	3	1		1	0 2	4.09375	
<u>VIALI</u>	<u>1 12</u>	United States	3	1		1	1 3	3.07829	
		United States	2	1		1	0 3	3.64845	
Synthet	ic data is generated from real data , but is	United States	3	1		1	0 2	5.66958	
		United States	3	1		1	0 2	5.85938	
not real	data.	United States	2	1		1	0	24.7357	
lot rear adda.		United States	5	0		0	0 2	7.75276	
		United States	5	0		1	1 2	8.07632	
		COU1A	AGECAT	AGELE70	WHITE	MALE	В	BMI	
		United States	1	2	L	1	1	33.75155	Svnth
	WHY IT MATTERS	United States	1	2	L	1	0	39.24707	
It has the same pattern		United States	1	1	L	1	0	26.5625	
	It has the same natterns and	United States	4	1	L	1	1	40.58273	
	it has the same patterns and	United States	5	5 (0	0	1	24.42046	
	statistical properties as real data	United States	5	5 (0	1	0	19.07124	
		United States		3	1	1	1	26.04938	
	Statistical properties as real uata.	United States					_		

HOW IT CAN BE USED

For certain use cases it can act as a proxy for real data.

Synthetic data generation

Machine learning or deep learning models capture patterns in the real data, and then generate new data from that model.

REAL DATA

FIT MODEL

APPLY MODEL

SYNTHETIC

DATA

Sequential synthesis utilizes multiple machine learning methods in a sequence

AN AETION COMPANY

Two types of synthesis

Partial synthesis for clinical trial data

- Synthesis of quasi-identifiers and key baseline measures
- Mitigates privacy risks while producing high utility data
- Allows for synthesis of all domains in a clinical trial dataset
- Avoids the challenges seen in clinical trial data posed by modelling rare or unique patterns in data (e.g., an adverse event that leads to additional concomitant medications or hospitalizations)
- Additional strategies to mitigate risk such as date shifting and suppression of free text

Partial synthesis vs traditional deidentification for clinical trial

- Synthesis maintains correlations between variables while traditional de-identification transforms each variable independently
- Synthesis can scale to complex datasets with many quasi-identifier variables while traditional de-identification may require shortcuts such as examining only a subset of quasi-identifiers to scale to complex datasets
- Less suppression required meaning key variables will be present in the output data

Assessing Utility and Privacy of Synthetic Trial Data

AN AETION COMPANY

Utility assessments

- Generic or broad utility assessments show how similar synthetic data is to the real data it was generated from without referencing a specific analysis
- Our utility assessment framework compares real and synthetic data using a range of metrics aimed to assess similarity at different levels of complexity

Univariate comparison

- Hellinger distance compares the distribution of a variable in the real data to the distribution seen in the synthetic data
 - Hellinger distance = $0 \rightarrow$ the distributions are identical
 - Hellinger distance = 1 \rightarrow the distributions are completely different and non-overlapping

Trial	Hellinger distance - Median (IQR)	Trial	Hellinger distance - Median (IQR)
CACZ885M2301	0.000 (0.002)	CQVM149B2302	0.002 (0.008)
CAIN457A2326	0.000 (0.014)	CRAD001A2433	0.002 (0.014)
CBKM120F2302	0.000 (0.009)	CRLX030A2301	0.000 (0.004)

AN AETION COMPANY

Bivariate comparison

- Assesses the absolute difference in bivariate correlation between all pairs of variables seen in the dataset
 - Uses correlation metrics specific to the data types of the variables (e.g., Pearson's correlation for pairs of continuous variables or Cramer's V for pairs of categorical variables)

Trial	Absolute difference in bivariate correlation - Median (IQR)	Trial	Absolute difference in bivariate correlation - Median (IQR)
CACZ885M2301	0.001 (0.008)	CQVM149B2302	0.004 (0.015)
CAIN457A2326	0.003 (0.019)	CRAD001A2433	0.005 (0.017)
CBKM120F2302	0.004 (0.019)	CRLX030A2301	0.001 (0.008)

Multivariate comparison

 Assesses the absolute difference in predictive ability seen for a model trained on the real data compared to a model trained on the synthetic data, iterating over every variable in the dataset as the 'target' variable

Trial	AUROC difference - Median (IQR)	AUPRC difference - Median (IQR)	Trial	AUROC difference - Median (IQR)	AUPRC difference - Median (IQR)
CACZ885M2301	0.0016 (0.094)	0.028 (0.132)	CQVM149B2302	0.028 (0.132)	0.0003 (0.048)
CAIN457A2326	0.002 (0.014)	0.002 (0.025)	CRAD001A2433	0.002 (0.025)	0.010 (0.044)
CBKM120F2302	0.001 (0.020)	0.002 (0.024)	CRLX030A2301	0.002 (0.024)	0.0001 (0.056)

Privacy concerns with synthetic data

In general, identity disclosure is not the main type that is of concern

 Unless the generative model has been overfit, in which case many records would just be replicated; but that should not be a common occurrence

We are concerned with other types of inferences from the dataset:

- Attribution disclosure
- Membership disclosure

Membership disclosure

- To what extent an adversary could determine that a target individual is in the training data that was used for training the generative model
- Knowing that someone is in the training dataset may reveal sensitive information about them, for example, if the dataset was about individuals who participated in an HIV study

The process for a membership disclosure attack

AN AETION COMPANY

The (ground truth) process for a membership disclosure attack

Probability of membership disclosure results

Trial	Max Risk	Max Adjusted Risk
CACZ885M2301	0.0057	<0.0001
CAIN457A2326	0.0018	<0.0001
CBKM120F2302	0.0035	<0.0001
CQVM149B2302	0.0002	<0.0001
CRAD001A2433	0.0117	<0.0001
CRLX030A2301	0.0076	0.000275

Probability of membership disclosure results

Trial	Max Risk	Max Adjusted Risk
CACZ885M2301	0.0057	<0.0001
CAIN457A2326	0.0018	<0.0001
CBKM120F2302	0.0035	<0.0001
CQVM149B2302	0.0002	<0.0001
CRAD001A2433	0.0117	<0.0001
CRLX030A2301	0.0076	0.000275

All below the commonly used acceptable risk threshold of 0.09

Utility and privacy conclusions

- Across all 6 datasets the synthetic data produced retains the same patterns and relationships seen in the real data
- Within a dataset there is a range of utility values, some patterns or relationships may be reproduced better than others
- Across all 6 datasets the synthetic data produced has low privacy risks in terms of membership disclosure. Without adjustment the max risk values seen are all below acceptable thresholds

Impact of the synthetic clinical trial datasets?

Mark Baillie

 \mathbf{X}

ΥY

UNOVARTIS | Reimagining Medicine

Requirements for the synthetic clinical trial data case study

- The value for Novartis is to facilitate timely access to realistic data to drive both internal and external projects and programs and avoid downtime as we wait for anonymization or approval to share data.
- Case study purpose to support the internal focused use cases of tool development (for trial reporting), and methodology development.
- Task definition synthesis of six complete Phase 3/4 clinical trials (CDISC ADaM)
- Success criteria:
 - Privacy:
 - o facilitate internal data sharing clinical study data has restricted access
 - \circ Utility:
 - The synthetic data is a 1:1 replication of the original data provided in terms of structure
 - Variables that are numerical, binary, or categorical (ordinal or non-ordinal) remain the same with similar distributions and min/max characteristics
 - The synthetic data should have similar characteristics to the original data but not be identical i.e., primary and secondary research follow similar trends

Impact of the synthetic clini cal trial datasets?

UNOVARTIS

Reimagining Medicine

Source: James, S., Harbron, C., Branson, J. et al. Synthetic data use: exploring use cases to optimise data utility. Discov Artif Intell 1, 15 (2021). https://doi.org/10.1007/s44163-021-00016-y

- Statistical/machine learning methodology development and benchmarking
- Internal (external) software development
- Education, training, data challenges, and hackathons
- Internal secondary use
- Data retention
- Vendor assessments and engagements
- External sharing

Impact of the synthetic clinical trial datasets?

Outcomes:

- we have six fully synthetic clinical trials i.e., immediate value
- ongoing plans to make this resource available for future use cases
- track usage to better understand and assess demand and understand better the benefits of synthetic data

The future:

- Policy and guidelines for internal and external use of synthetic data
- Explore further the value proposition for synthetic data value
 - Data augmentation (e.g., for clinical trial design, prior / evidence synthesis)
 - The balance between privacy/utility for external data sharing
- Further evaluation of synthetic data and data generators (i.e., models) for further use

Questions?

AN AETION COMPANY

Thank you!

AN AETION COMPANY